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PAC Fields

Pseudo Algebrically Closed Fields

Let K be a field. If each nonempty variety defined over K has a K-rational
point, then K is called psudo algebraically closed field or PAC field .

1. Let K be a PAC field and V a variety defined over K. Then the set
V (K) is dense in V in Zariski K-topology. In particular K is infinite.

2. Let L be an algebraic extension of an infinite field K. Suppose every
plane curve defined over K has an L-rational point. Then L is PAC.

3. (Ershov): Infinite algebraic extensions of finite fields are PAC fields.

4. (Ax-Roquette): Algebraic extension of a PAC field is a PAC field.
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Minimal PAC Fields

The minimal PAC fields are PAC fields whose proper subfields are not
PAC fields.
Example : Let K = Fp be a finite prime field. Let q be a prime number and

Fq∞

p =
⋃∞

i=1
F

pqi . Therefore Fq∞

p is an infinte algebraic extension of Fp

and therefore is a PAC field. It is known that

Gal(Fq∞

p /Fp) ∼= Zq = lim
←−

Z/qiZ.

Therefore each proper subfield of Fq∞

p is equivalent with a proper closed

subgroup of Zq. If Fq∞

p has an infinite proper subfield then Zq has a proper
closed subgroup of infinite index but Zq does not have a proper closed
subgroup of infinite index. Thus the only proper subfields of Fq∞

p are finite

fields which are not PAC. Therefore Fq∞

p is a minimal PAC field.
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5. Every ultraproduct of PAC fields are PAC field.

6. (Ax): Every nonprincipal ultraproduct of distinct finite fields is a PAC
field.

Valuation on PAC Fields

1. Let (K, v) be a valued field, and let K′ be an algebraic extension of
K. Then v has an extension v′ to K′.

2. Let (K, v) be a valued field. Then (K, v) is Henselian if and only if v

has a unique extension to the algebraic closure K̃ of K.

3. Every algebraic extension of a Henselian valued field is Henselian.
Every separably closed field is Henselian with respect to each one
of its valuation.
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4. Every valued field (K, v) has a Henselian closure (K~, v~). K~ is an
algebraic separable extension of K and v~(K~) = v(K).

5. (Prestel) : Let (K, v) be a valued PAC field and let ṽ be an extension
of v to K̃. Then K is ṽ-dense in K̃.

6. (Frey-Prestel) : Let (K, v) be a valued PAC field with Henselian
closure (K~, v~). Then K~ ∼= Ksep, the separable closure of K.
Moreover, the residue field K~/v~ is separably closed and value
group v(K~) is a divisble group.

7. Let (K, v) be a Henselian valued field and K is not separably
closed. Then K is not a PAC field.
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• The fields Qab and Qnil are not PAC fields . Let Qp,alg = Q̃ ∩Qp.

Since Qp is complete therefore it is Henselian and every valuation on Qp

has a unique extension to its closure Q̃p. On the other hand

Gal(Q̃p/Qp) ∼= Gal(Q̃/Qp,alg)

p

p

, lgp a p

Therefore every valuation on Qp,alg has also a unique extension to Q̃ and
thus Qp,alg is Henselian. Let assume Qnil is PAC field.
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Qp,algQnil is an algebraic extension of Qp,alg. Since Qp,alg is Henselian
therefore Qp,algQnil is Henselian. Qp,algQnil is an algebraic extension of
Qnil and since Qnil is PAC therefore Qp,algQnil is PAC. Qp,algQnil is PAC
and Henselian therefore it is separably closed. It concludes that
Qp,algQnil

∼= Q̃. Now we have

Gal(Qp,alg) ∼ Gal(Q̃/Qp,alg) ∼= Gal(Qnil/(Qp,alg ∩Qnil))

, lg.nil p a

, lgp a nil

, lgp a nil

PAC Fields,... – p. 7/22



Since Gal(Qnil/(Qp,alg ∩Qnil)) is pronilpotent therefore Gal(Qp,alg) is
pronilpotent. Thus Galois group of any extension of Qp,alg is nilpotent.

Let p = 5. Using Eisenstein’s criterion the polynomial X3 + 5 is irreducible
over Q5 and its discriminant is −27.52. Since −27 ≡ 3 (mod 5), −27 is not
a quaderatic residue modulo 5 and −27.52 is not a squre in Q5. Therefore
X3 + 5 is an irreducible polynomial over Q5,alg and its discriminant is not a
square in Q5,alg. Therefore Gal(X3 + 5, Q5,alg) is S3 which is not nilpotent.
This proves that Q5,algQnil ≇ Q̃. Therefore Qnil is not a PAC field. Since
Qab is an algebraic extension of Qnil, thus Qab is not also a PAC field.

• Is Qsol a PAC field ?

It is known that the Gal(Qp) = Gal(Q̃p/Qp) is a prosolvable group.
Therefore any finite dimensional Galois extension of Qp is solvable. On the
other hand there is a one to one correspondence betweeen finite Galois
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field extension of Qp and Qp,alg. Therefore any finite Galois extension of
Qp,alg is solvable. Since Qsol is compositum of all solvable extensions of
Q then it is concluded that Qp,algQsol

∼= Q̃.

p

, lgsol p a

p

sol

, lgp a p

This shows that Q~
sol
∼= Qp,algQsol

∼= Q̃ and therefore all valuation on Qsol

are non-Henselian. Therefore the statement "Let (K, v) be a Henselian
valued field and K is not separably closed. Then K is not a PAC
field" is failed to prove Qsol is not a PAC field.
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8. (Ax) : Let K be a PAC field. Then Gal(K) is projective.

9. The following statements hold for every PAC field K:

(a) Gal(K) is projective.
(b) Br(K) is trivial.
(c) cd(Gal(K)) ≤ 1.

Comments : The conditions (a) and (c) are equivalent on any field K. It is
known that Gal(Qsol) is projective and Br(Qsol) is trivial. Therefore the
conditions in (a)-(c) are failed to make a contradiction to prove Qsol is not
a PAC field.
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Hilbertian Fields

Hilbert Sets and Hilbertian Fields

Let f1(T,X), ..., fm(T,X) be polynomials in X1, ..., Xn with coefficients in
K(T), T = (T1, ..., Tr). Let assume that these polynomials are irreducible
in the ring K(T)[X]. For a non-zero plolynomial g ∈ K[T] the Hilbert
subset HK(f1, ..., fm, g) of Kr is defined as:

HK(f1, ..., fm, g) = {a ∈ Kr | g(a) 6= 0,

f1(a,X), ..., fm(a,X), are irreducible inK[X]}

In addition if each fi is separable in X, HK(f1, ..., fm, g) is called a
separable Hilbert subset of Kr. Let n = 1, a (separable) Hilbert set of
K is defined as a (separable) Hilbert subset of Kr for some positive
integer r. A field K is called Hilbertian if each separable set of K is
non-empty.

1. Each separable Hilbertian set of Kr is dense in Kr. Therefore each
Hilbertian field is infinite.
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2. Let L be a finite separable extension of K. If K is Hilbertian then L

is Hilbertian.

A global field K is either a finite extension of Q (number field ) or a
function field of one variable over a finite field Fp.

3. Suppose K is a global field or a finitely generated transcendental
extension of an arbitrary field K0. Then K is Hilbertian.

4. Let ℵ be a cardinal number and {Kα | α < ℵ} a transfinite sequence
of fields. Suppose that for each α < ℵ the field Kα+1 is a proper
finitely generated regular extension of Kα. Then K =

⋃
α<ℵ

Kα is a
Hilbertian field.

PAC Fields,... – p. 12/22



5. (Fried) : Every field K has a regular extension F which is PAC and
Hilbertian. (F is a regular extension of K if F/K is separable and K

is algebraically closed in F )

6. Diamond theorem (Haran) : Let K be a Hilbertian field , L1 and L2

Galois extensions of K, and L an intermediate field of L1L2/K.
Suppose that L * L1 and L * L2.Then L is Hilbertian.

1 2L L

L

1L 2L

K

Galois extension Galois extension 

7. (Haran-Jarden) : Let K be a Hilbertian field and let N be a Galois
extension of K which is not Hilbertian.
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Then N is not the compositum of two Galois extensions of K neither of
which is contained in the other. In particular, this conclusion holds for
separable closure of K i.e., Ks.

9. Let K be a Hilbertian field.

• Let M be a separable algebraic extension of K and M ′ a proper
finite separable extension of M .

M M

M

K

Separable algebraic extension

Finite proper separable extension

M Galois closure of /M K

If M ′ * M̃ then M ′ is Hilbertian.
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• Let N be a Galois extension of K and N ′ a finite proper separable
extension of N .

N

N

K

Galois extension 

Finite proper separable extension

Then N ′ is Hilbertian.

• Let N be a Galois extension of K and L a finite separable extension
of K. Suppose L ∩N = K. Then NL is Hilbertian.

L N

K

Finite separable extension Galois extension 
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• Qsol is not a Hilbertian field.

Since Qsol is the compositum of all finite solvable extension of Q then
there is no a ∈ Qsol such that X2 − a is irreducible over Qsol. Therefore if
f(X, T ) = X2 − T then HQsol

(f) is empty. This shows that Qsol is not a
Hilbertian field.

• Any finite proper extension of Qsol is Hilbertian.

Using Weissauer’s theorem and since Qsol is a Galois extension of Q then
any finite proper extension of Qsol is Hilbertian.

• Qsol is not a compositum of two separate Galois extensions of Q.

Using Haran-Jarden theorem since Qsol is a Galois extension of Q which
is not Hilbertian then Qsol is not compositum of two Galois extensions of
Q neither of which is contained in the other.
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10. No Henselian field is Hilbertian.

• Qp, Qp,alg and formal power series K0[[X ]] are complete discrete
valued fields and therefore Henselian. Thus they are not Hilbertian .

11. (Kuyk): Every abelian extension of a Hilbertian field is Hilbertian.

• Qab is Hilbertian . Abelian closure of any number field is Hilbertian.

A profinite group G is small if for each positive integer n the group G has
only finitely many open subgroups of index n. (Example: Zp is small.)

12. Let K be a Hilbertian field. Then Gal(K) is niether prosolvable nor
small.

13. Let L be a Galois extension of a Hilbertian field K. Suppose
L 6= Ks. Then Gal(L) is nither prosolvable nor it is contained in a
closed small subgroup of Gal(K).
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Let K be a field and G a profinite group. Suppose K has Galois extension
L with Gal(L/K) ∼= G. Then, G occurs over K and L is a G-extension of
K.

14. Let L be a Galois extension of a Hilbertian field K. If Gal(L/K) is
small then L is Hilbertian.

15. Let K be a Hilbertian field and p a prime number. Then Zp occurs
over K. (Therefore there is a Galois extension L of K such that
Gal(L/K) ∼= Zp).

• For each p, according to the statement in (15), Q has a Galois
extension Lp with Gal(Lp/Q) ∼= Zp. By (14), Lp is Hilbertian. Since Zp has
no nontrivial closed finite subgroups then:

Lp is a Hilbertian field which is not a proper finite extension of a ny field .
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Fried-Völklein Conjecture

Let G be a profinite group. The Borel field of G, B(G) is the σ-algebra
generated by all closed subsets of G.

1. Every profinte group has a unique Haar measure on B(G).

For a field K and for a σ ∈ Gal(K)e let Ks(σ) be the fixed field in Ks of the
entries of σ by Ks(σ).

2. (Jarden): Let K be a countable Hilbertian field and e a positive
integer. Then Ks(σ) is a PAC field for almost all σ ∈ Gal(K)e.

3. (Fried-Jarden): Let K be a countable Hilbertian field. Then K has a
Galois extension N which is Hilbertian and PAC with
Gal(N/K) ≃

∏∞

k=1
Sk
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Outline of the Proof:

• List all plane curve over K in a sequence C1, C2, C3, . . . .
• Construct a sequence of points p1,p2,p3, . . . of A2(K), and a linearly
disjoint sequence L1,L2,L3, . . . , . . . of Galois extensions of K satisfying:

1. Gal(Lk/K) ≃ Sk, k = 1, 2, 3, . . .

2. pi ∈ Ci(Lk)

3. The points p1,p2, . . . are distinct.

• Define N =
∏∞

k=1
Lk. Then N is a Galois extension and

Gal(N/K) ≃
∏

∞

k=1
Sk.

• N is finite proper extension of the Galois extension
∏

∞

k=2
Lk and thus

N is Hilbertian.
• Each plane curve over K has an N -rational point and therefore N is a
PAC field.
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An embedding problem for a profinite group G is a pair

(φ : G→ A, α : B → A)

in which φ and α are epimorphisms of profinite groups. The Ker(α) is
called kernel of the problem . The problem is called finite if B is finite.
The problem is called solvable if there exist an epimorphism γ : G→ B

with α ◦ γ = φ.

5. (Iwasawa): Let K be a countable field. Then if every finite
embedding problem over K is solvable then Gal(K) is
ω-free. (Gal(K) ≃ F̂ω)

6. (Fried-Völklein): Every finite embedding problem over a Hilbertian
PAC field is solvable.

7. (Fried-Völklein): Let K be a countable Hilbertian PAC field. Then
Gal(K) is ω-free.
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Fried-Völklein Conjecture
Let K be a countable Hilbertian field. If the absolute Galois group of K,

Gal(K), is projective then Gal(K) is ω-free.

(Class Field Thery : Absolute Galois group of abelian closure of any
number field is projective.)

Shafar evich Conjecture
Let K be abelian closure of a number field. Then the absolute Galois

group of K, Gal(K), is ω-free.
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Let K be a countable Hilbertian field. If the absolute Galois group of K,
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