PAC Fields, Hilbertian Fields and Fried-Völklein Conjecture

Reza Akbarpour akbarpur@uwo.ca

PAC Fields,... - p. 1/22

PAC Fields

Pseudo Algebrically Closed Fields

Let K be a field. If each nonempty variety defined over K has a K-rational point, then K is called psudo algebraically closed field or **PAC field**.

- 1. Let *K* be a PAC field and *V* a variety defined over *K*. Then the set V(K) is dense in *V* in Zariski *K*-topology. In particular *K* is infinite.
- 2. Let *L* be an algebraic extension of an infinite field *K*. Suppose every plane curve defined over *K* has an *L*-rational point. Then *L* is PAC.
- **3.** (Ershov): Infinite algebraic extensions of finite fields are PAC fields.
- 4. (Ax-Roquette): Algebraic extension of a PAC field is a PAC field.

Minimal PAC Fields

The minimal PAC fields are PAC fields whose proper subfields are not PAC fields.

Example: Let $K = \mathbb{F}_p$ be a finite prime field. Let q be a prime number and $\mathbb{F}_p^{q^{\infty}} = \bigcup_{i=1}^{\infty} \mathbb{F}_{p^{q^i}}$. Therefore $\mathbb{F}_p^{q^{\infty}}$ is an infinite algebraic extension of \mathbb{F}_p and therefore is a PAC field. It is known that

$$Gal(\mathbb{F}_p^{q^{\infty}}/\mathbb{F}_p) \cong \mathbb{Z}_q = \varprojlim \mathbb{Z}/q^i \mathbb{Z}.$$

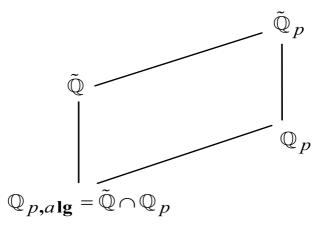
Therefore each proper subfield of $\mathbb{F}_p^{q^{\infty}}$ is equivalent with a proper closed subgroup of \mathbb{Z}_q . If $\mathbb{F}_p^{q^{\infty}}$ has an infinite proper subfield then \mathbb{Z}_q has a proper closed subgroup of infinite index but \mathbb{Z}_q does not have a proper closed subgroup of infinite index. Thus the only proper subfields of $\mathbb{F}_p^{q^{\infty}}$ are finite fields which are not PAC. Therefore $\mathbb{F}_p^{q^{\infty}}$ is a minimal PAC field.

- 5. Every ultraproduct of PAC fields are PAC field.
- (Ax): Every nonprincipal ultraproduct of distinct finite fields is a PAC field.
- Valuation on PAC Fields
- 1. Let (K, v) be a valued field, and let K' be an algebraic extension of K. Then v has an extension v' to K'.
- 2. Let (K, v) be a valued field. Then (K, v) is Henselian if and only if v has a unique extension to the algebraic closure \tilde{K} of K.
- Every algebraic extension of a Henselian valued field is Henselian. Every separably closed field is Henselian with respect to each one of its valuation.

- 4. Every valued field (K, v) has a Henselian closure (K^{\hbar}, v^{\hbar}) . K^{\hbar} is an algebraic separable extension of K and $v^{\hbar}(K^{\hbar}) = v(K)$.
- 5. (Prestel): Let (K, v) be a valued PAC field and let \tilde{v} be an extension of v to \tilde{K} . Then K is \tilde{v} -dense in \tilde{K} .
- 6. (Frey-Prestel): Let (K, v) be a valued PAC field with Henselian closure (K^ħ, v^ħ). Then K^ħ ≅ K^{sep}, the separable closure of K. Moreover, the residue field K^ħ/v^ħ is separably closed and value group v(K^ħ) is a divisble group.
- 7. Let (K, v) be a Henselian valued field and K is not separably closed. Then K is not a PAC field.

• The fields \mathbb{Q}_{ab} and \mathbb{Q}_{nil} are not PAC fields. Let $\mathbb{Q}_{p,alg} = \tilde{\mathbb{Q}} \cap \mathbb{Q}_p$. Since \mathbb{Q}_p is complete therefore it is Henselian and every valuation on \mathbb{Q}_p has a unique extension to its closure $\tilde{\mathbb{Q}}_p$. On the other hand

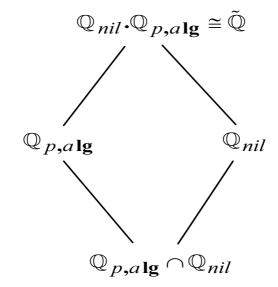
 $Gal(\tilde{\mathbb{Q}}_p/\mathbb{Q}_p) \cong Gal(\tilde{\mathbb{Q}}/\mathbb{Q}_{p,alg})$



Therefore every valuation on $\mathbb{Q}_{p,alg}$ has also a unique extension to \mathbb{Q} and thus $\mathbb{Q}_{p,alg}$ is Henselian. Let assume \mathbb{Q}_{nil} is PAC field.

 $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil}$ is an algebraic extension of $\mathbb{Q}_{p,alg}$. Since $\mathbb{Q}_{p,alg}$ is Henselian therefore $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil}$ is Henselian. $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil}$ is an algebraic extension of \mathbb{Q}_{nil} and since \mathbb{Q}_{nil} is PAC therefore $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil}$ is PAC. $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil}$ is PAC and Henselian therefore it is separably closed. It concludes that $\mathbb{Q}_{p,alg}\mathbb{Q}_{nil} \cong \tilde{\mathbb{Q}}$. Now we have

 $Gal(\mathbb{Q}_{p,alg}) \sim Gal(\tilde{\mathbb{Q}}/\mathbb{Q}_{p,alg}) \cong Gal(\mathbb{Q}_{nil}/(\mathbb{Q}_{p,alg} \cap \mathbb{Q}_{nil}))$



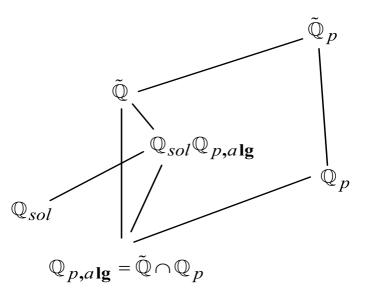
PAC Fields,... - p. 7/22

Since $Gal(\mathbb{Q}_{nil}/(\mathbb{Q}_{p,alg} \cap \mathbb{Q}_{nil}))$ is pronilpotent therefore $Gal(\mathbb{Q}_{p,alg})$ is pronilpotent. Thus Galois group of any extension of $\mathbb{Q}_{p,alg}$ is nilpotent.

Let p = 5. Using Eisenstein's criterion the polynomial $X^3 + 5$ is irreducible over \mathbb{Q}_5 and its discriminant is -27.5^2 . Since $-27 \equiv 3 \pmod{5}$, -27 is not a quaderatic residue modulo 5 and -27.5^2 is not a squre in \mathbb{Q}_5 . Therefore $X^3 + 5$ is an irreducible polynomial over $\mathbb{Q}_{5,alg}$ and its discriminant is not a square in $\mathbb{Q}_{5,alg}$. Therefore $Gal(X^3 + 5, \mathbb{Q}_{5,alg})$ is S_3 which is not nilpotent. This proves that $\mathbb{Q}_{5,alg}\mathbb{Q}_{nil} \ncong \mathbb{Q}$. Therefore \mathbb{Q}_{nil} is not a PAC field. Since \mathbb{Q}_{ab} is an algebraic extension of \mathbb{Q}_{nil} , thus \mathbb{Q}_{ab} is not also a PAC field.

• Is \mathbb{Q}_{sol} a PAC field?

It is known that the $Gal(\mathbb{Q}_p) = Gal(\tilde{\mathbb{Q}}_p/\mathbb{Q}_p)$ is a prosolvable group. Therefore any finite dimensional Galois extension of \mathbb{Q}_p is solvable. On the other hand there is a one to one correspondence betweeen finite Galois field extension of \mathbb{Q}_p and $\mathbb{Q}_{p,alg}$. Therefore any finite Galois extension of $\mathbb{Q}_{p,alg}$ is solvable. Since \mathbb{Q}_{sol} is compositum of all solvable extensions of \mathbb{Q} then it is concluded that $\mathbb{Q}_{p,alg}\mathbb{Q}_{sol} \cong \tilde{\mathbb{Q}}$.



This shows that $\mathbb{Q}_{sol}^{\hbar} \cong \mathbb{Q}_{p,alg} \mathbb{Q}_{sol} \cong \tilde{\mathbb{Q}}$ and therefore all valuation on \mathbb{Q}_{sol} are non-Henselian. Therefore the statement "Let (K, v) be a Henselian valued field and K is not separably closed. Then K is not a PAC field" is failed to prove \mathbb{Q}_{sol} is not a PAC field.

- 8. (Ax): Let K be a PAC field. Then Gal(K) is projective.
- **9**. The following statements hold for every PAC field *K*:
 - (a) Gal(K) is projective.
 - (b) Br(K) is trivial.
 - (c) $cd(Gal(K)) \leq 1$.

Comments: The conditions (a) and (c) are equivalent on any field *K*. It is known that $Gal(\mathbb{Q}_{sol})$ is projective and $Br(\mathbb{Q}_{sol})$ is trivial. Therefore the conditions in (a)-(c) are failed to make a contradiction to prove \mathbb{Q}_{sol} is not a PAC field.

Hilbertian Fields

Hilbert Sets and Hilbertian Fields

Let $f_1(\mathbf{T}, \mathbf{X}), ..., f_m(\mathbf{T}, \mathbf{X})$ be polynomials in $X_1, ..., X_n$ with coefficients in $K(\mathbf{T}), T = (T_1, ..., T_r)$. Let assume that these polynomials are irreducible in the ring $K(\mathbf{T})[\mathbf{X}]$. For a non-zero plolynomial $g \in K[\mathbf{T}]$ the **Hilbert** subset $H_K(f_1, ..., f_m, g)$ of K^r is defined as:

$$\begin{split} H_K(f_1,...,f_m,g) &= \{ a \in K^r \mid g(a) \neq 0, \\ f_1(a,\mathbf{X}),...,f_m(a,\mathbf{X}), \text{ are irreducible in} K[\mathbf{X}] \} \end{split}$$

In addition if each f_i is separable in **X**, $H_K(f_1, ..., f_m, g)$ is called a **separable Hilbert subset** of K^r . Let n = 1, a **(separable) Hilbert set** of K is defined as a (separable) Hilbert subset of K^r for some positive integer r. A field K is called **Hilbertian** if each separable set of K is non-empty.

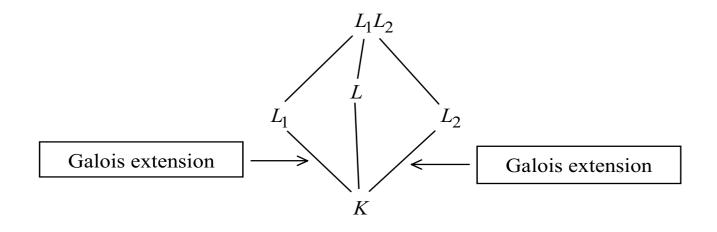
1. Each separable Hilbertian set of K^r is dense in K^r . Therefore each Hilbertian field is infinite.

2. Let *L* be a finite separable extension of *K*. If *K* is Hilbertian then *L* is Hilbertian.

A global field K is either a finite extension of \mathbb{Q} (number field) or a function field of one variable over a finite field \mathbb{F}_p .

- 3. Suppose *K* is a global field or a finitely generated transcendental extension of an arbitrary field K_0 . Then *K* is Hilbertian.
- 4. Let \aleph be a cardinal number and $\{K_{\alpha} \mid \alpha < \aleph\}$ a transfinite sequence of fields. Suppose that for each $\alpha < \aleph$ the field $K_{\alpha+1}$ is a proper finitely generated regular extension of K_{α} . Then $K = \bigcup_{\alpha < \aleph} K_{\alpha}$ is a Hilbertian field.

- 5. (Fried): Every field K has a regular extension F which is PAC and Hilbertian. (F is a regular extension of K if F/K is separable and K is algebraically closed in F)
- 6. Diamond theorem (Haran): Let K be a Hilbertian field, L_1 and L_2 Galois extensions of K, and L an intermediate field of L_1L_2/K . Suppose that $L \not\subseteq L_1$ and $L \not\subseteq L_2$. Then L is Hilbertian.

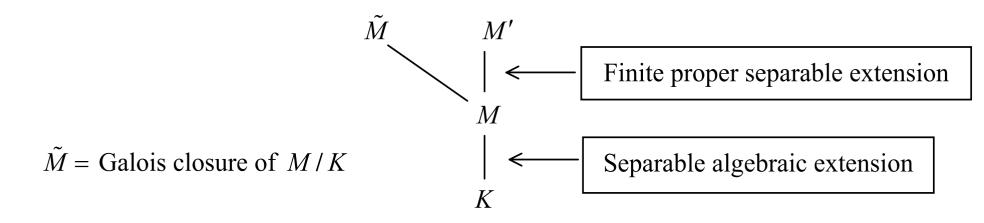


7. (Haran-Jarden): Let K be a Hilbertian field and let N be a Galois extension of K which is not Hilbertian.

Then N is not the compositum of two Galois extensions of K neither of which is contained in the other. In particular, this conclusion holds for separable closure of K i.e., K_s .

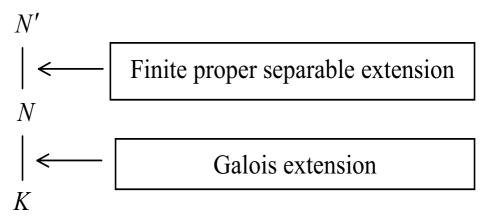
9. Let K be a Hilbertian field.

• Let M be a separable algebraic extension of K and M' a proper finite separable extension of M.



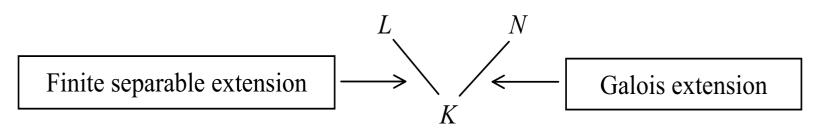
If $M' \nsubseteq \tilde{M}$ then M' is Hilbertian.

• Let N be a Galois extension of K and N' a finite proper separable extension of N.



Then N' is Hilbertian.

• Let N be a Galois extension of K and L a finite separable extension of K. Suppose $L \cap N = K$. Then NL is Hilbertian.



PAC Fields,... - p. 15/22

• \mathbb{Q}_{sol} is not a Hilbertian field.

Since \mathbb{Q}_{sol} is the compositum of all finite solvable extension of \mathbb{Q} then there is no $a \in \mathbb{Q}_{sol}$ such that $X^2 - a$ is irreducible over \mathbb{Q}_{sol} . Therefore if $f(X,T) = X^2 - T$ then $H_{\mathbb{Q}_{sol}}(f)$ is empty. This shows that \mathbb{Q}_{sol} is not a Hilbertian field.

• Any finite proper extension of \mathbb{Q}_{sol} is Hilbertian.

Using Weissauer's theorem and since \mathbb{Q}_{sol} is a Galois extension of \mathbb{Q} then any finite proper extension of \mathbb{Q}_{sol} is Hilbertian.

• \mathbb{Q}_{sol} is not a compositum of two separate Galois extensions of \mathbb{Q} .

Using Haran-Jarden theorem since \mathbb{Q}_{sol} is a Galois extension of \mathbb{Q} which is not Hilbertian then \mathbb{Q}_{sol} is not compositum of two Galois extensions of \mathbb{Q} neither of which is contained in the other.

10. No Henselian field is Hilbertian.

• \mathbb{Q}_p , $\mathbb{Q}_{p,alg}$ and formal power series $K_0[[X]]$ are complete discrete valued fields and therefore Henselian. Thus they are **not Hilbertian**.

11. (Kuyk): Every abelian extension of a Hilbertian field is Hilbertian.

• \mathbb{Q}_{ab} is **Hilbertian**. Abelian closure of any number field is Hilbertian.

A profinite group G is **small** if for each positive integer n the group G has only finitely many open subgroups of index n. (**Example:** \mathbb{Z}_p is small.)

- 12. Let K be a Hilbertian field. Then Gal(K) is niether prosolvable nor small.
- 13. Let *L* be a Galois extension of a Hilbertian field *K*. Suppose $L \neq K_s$. Then Gal(L) is nither prosolvable nor it is contained in a closed small subgroup of Gal(K).

Let *K* be a field and *G* a profinite group. Suppose *K* has Galois extension *L* with $Gal(L/K) \cong G$. Then, *G* occurs over *K* and *L* is a *G*-extension of *K*.

- 14. Let *L* be a Galois extension of a Hilbertian field *K*. If Gal(L/K) is small then *L* is Hilbertian.
- 15. Let *K* be a Hilbertian field and *p* a prime number. Then \mathbb{Z}_p occurs over *K*. (Therefore there is a Galois extension *L* of *K* such that $Gal(L/K) \cong \mathbb{Z}_p$).

• For each p, according to the statement in (15), \mathbb{Q} has a Galois extension \mathbb{L}_p with $Gal(\mathbb{L}_p/\mathbb{Q}) \cong \mathbb{Z}_p$. By (14), \mathbb{L}_p is Hilbertian. Since \mathbb{Z}_p has no nontrivial closed finite subgroups then:

\mathbb{L}_p is a Hilbertian field which is not a proper finite extension of any field.

Fried-Völklein Conjecture

Let *G* be a profinite group. The **Borel field** of *G*, $\mathcal{B}(G)$ is the σ -algebra generated by all closed subsets of *G*.

1. Every profinte group has a unique Haar measure on $\mathcal{B}(G)$.

For a field K and for a $\sigma \in Gal(K)^e$ let $K_s(\sigma)$ be the fixed field in K_s of the entries of σ by $K_s(\sigma)$.

- 2. (Jarden): Let *K* be a countable Hilbertian field and *e* a positive integer. Then $K_s(\sigma)$ is a PAC field for almost all $\sigma \in Gal(K)^e$.
- 3. (Fried-Jarden): Let *K* be a countable Hilbertian field. Then *K* has a Galois extension *N* which is Hilbertian and PAC with $Gal(N/K) \simeq \prod_{k=1}^{\infty} S_k$

Outline of the Proof:

- List all plane curve over K in a sequence C_1, C_2, C_3, \ldots
- Construct a sequence of points $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3, \ldots$ of $\mathbb{A}^2(K)$, and a linearly disjoint sequence $\mathbf{L}_1, \mathbf{L}_2, \mathbf{L}_3, \ldots, \ldots$ of Galois extensions of *K* satisfying:

1.
$$Gal(\mathbf{L}_k/\mathbf{K}) \simeq S_k, \ k = 1, 2, 3, \dots$$

2. $\mathbf{p}_i \in C_i(\mathbf{L}_k)$

- 3. The points $\mathbf{p}_1, \mathbf{p}_2, \ldots$ are distinct.
- Define $N = \prod_{k=1}^{\infty} \mathbf{L}_k$. Then N is a Galois extension and $Gal(N/K) \simeq \prod_{k=1}^{\infty} S_k$.
- *N* is finite proper extension of the Galois extension $\prod_{k=2}^{\infty} \mathbf{L}_k$ and thus *N* is Hilbertian.
- Each plane curve over *K* has an *N*-rational point and therefore *N* is a PAC field.

An **embedding problem** for a profinite group G is a pair

 $(\phi: G \to A, \alpha: B \to A)$

in which ϕ and α are epimorphisms of profinite groups. The $Ker(\alpha)$ is called **kernel of the problem**. The problem is called **finite** if *B* is finite. The problem is called solvable if there exist an epimorphism $\gamma : G \to B$ with $\alpha \circ \gamma = \phi$.

- 5. (Iwasawa): Let K be a countable field. Then if every finite embedding problem over K is solvable then Gal(K) is ω -free. ($Gal(K) \simeq \hat{F}_{\omega}$)
- 6. (Fried-Völklein): Every finite embedding problem over a Hilbertian PAC field is solvable.
- 7. (Fried-Völklein): Let K be a countable Hilbertian PAC field. Then Gal(K) is ω -free.

Fried-Völklein Conjecture

Let K be a countable Hilbertian field. If the absolute Galois group of K, Gal(K), is projective then Gal(K) is ω -free.

(**Class Field Thery**: Absolute Galois group of abelian closure of any number field is projective.)

Shafarevich Conjecture

Let K be abelian closure of a number field. Then the absolute Galois group of K, Gal(K), is ω -free.